What's new
Warez.Ge

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Epioptics Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces

voska89

Moderator
Staff member
Top Poster Of Month
bc9ce91c273296e3c9f444f9f72e945b.webp

Free Download Epioptics: Linear and Nonlinear Optical Spectroscopy of Surfaces and Interfaces By John McGilp (auth.), J. F. McGlip, D. Weaire, C. H. Patterson (eds.)
1995 | 230 Pages | ISBN: 3642798225 | PDF | 9 MB
The study of condensed matter using optical techniques, where photons act as both probe and signal, has a long history. It is only recently, however, that the extraction of surface and interface information, with submonolayer resolution, has been shown to be possible using optical techniques (where "optical" applies to electromagnetic radiation in and around the visible region of the spectrum). This book describes these "epioptic" techniques, which have now been quite widely applied to semiconductor surfaces and interfaces. Particular emphasis in the book is placed on recent studies of submonolayer growth on well-characterised semiconductor surfaces, many of which have arisen from CEC DGJGII ESPRIT Basic Research Action No. 3177 "EPIOPTIC", and CEU DGIII ESPRIT Basic Research Action No. 6878 "EASI". Techniques using other areas of the spectrum such as the infra-red region (IR spectroscopy, in its various surface configurations), and the x-ray region (surface x-ray diffraction, x-ray standing wave), are omitted. The optical techniques described use simple lamp or small laser sources and are thus, in principle, easily accessible. Epioptic probes can provide new information on solid-gas, solid-liquid and liquid-liquid interfaces. They are particularly suited to growth monitoring. Emerging process technologies for fabricating submicron and nanoscale semiconductor devices and novel multilayer materials, whether based on silicon or compound semiconductors, all require extremely precise control of growth at surfaces. In situ, non-destructive, real-time monitoring and characterisation of surfaces under growth conditions is needed for further progress. Both atomic scale resolution, and non-destructive characterisation of buried structures, are required.​



Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

Rapidgator
q7k3x.7z.html
TakeFile
q7k3x.7z.html
Fileaxa
q7k3x.7z
Fikper
q7k3x.7z.html

Links are Interchangeable - Single Extraction
 

Users who are viewing this thread

Back
Top