What's new
Warez.Ge

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Nonlocal Euler-Bernoulli Beam Theories A Comparative Study

voska89

Moderator
Staff member
Top Poster Of Month
e84aca0be9172b026206c73ad63fe873.jpeg

Nonlocal Euler-Bernoulli Beam Theories: A Comparative Study by Jingkai Chen
English | EPUB | 2021 | 64 Pages | ISBN : 3030697878 | 11.7 MB
This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen's stress-gradient beam theory, the Mindlin's strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen's stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin's strain-gradient beam equation is much stiffer.

This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen's stress-gradient beam theory, the Mindlin's strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen's stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin's strain-gradient beam equation is much stiffer.
The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on the values of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.


Code:
https://hot4share.com/airycbs3v8pn/2me6t.N.E.B.T.A.C.S.rar.html
Uploadgig
https://uploadgig.com/file/download/d4a5d37c81abF050/2me6t.N.E.B.T.A.C.S.rar
Rapidgator
https://rapidgator.net/file/d93257f6442abec2a2ea5289916d5322/2me6t.N.E.B.T.A.C.S.rar.html
NitroFlare
https://nitro.download/view/641ACC5E53E0AE4/2me6t.N.E.B.T.A.C.S.rar
Links are Interchangeable - No Password - Single Extraction
 

Users who are viewing this thread

Back
Top