What's new
Warez.Ge

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Sequential Monte Carlo Methods in Practice

voska89

Moderator
Staff member
Top Poster Of Month
58d80d99dad0a5bff881394f5414f1a7.webp

Free Download Sequential Monte Carlo Methods in Practice by Arnaud Doucet, Nando Freitas, Neil Gordon
English | PDF (True) | 2001 | 590 Pages | ISBN : 0387951466 | 51.1 MB
Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning.​

[/b]

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live

Uploady
jbaix.7z
Rapidgator
jbaix.7z.html
UploadCloud
jbaix.7z.html
Fikper
jbaix.7z.html
FreeDL
jbaix.7z.html

Links are Interchangeable - Single Extraction
 

Users who are viewing this thread

Back
Top